sábado, 27 de septiembre de 2008

esperanza matematica

Esperanza matemática

En estadística la esperanza matemática (o simplemente esperanza) o valor esperado de una variable aleatoria es la suma del producto de la probabilidad de cada suceso por el valor de dicho suceso. Por ejemplo, en un juego de azar el valor esperado es el beneficio medio.

Si todos los sucesos son de igual probabilidad la esperanza es la media aritmética.

Definición [editar]

Para una variable aleatoria discreta con valores posibles x_1, x_2 \ldots x_n \,\! y sus probabilidades representadas por la función de masa p(xi) la esperanza se calcula como:

E[X]=\sum_{i=1}^{n} x_i p(x_i) \,\!

Para una variable aleatoria continua la esperanza se calcula mediante la integral de todos los valores y la función de densidad f(x) \,\!:

E[X]=\int_{-\infty}^\infty x f(x)dx \,\!
o \operatorname{E}[X] = \int_\Omega X\, \operatorname{d}P \,\!

La esperanza también se suele simbolizar con \mu = E[X] \,\!

Las esperanzas E[X^k] \,\! para k=0,1,2... \,\! se llaman momentos de orden k \,\!. Más importantes son los momentos centrados E[(X-E[X])^k] \,\!.

No todas las variables aleatorias tienen un valor esperado. Por ejemplo, la distribución de Cauchy no lo tiene.

comentario: la esperanza matematica esta relacionada con lo que es el valor aleatorio de una variable

viernes, 26 de septiembre de 2008

diagrama de arbol

I. DIAGRAMA DE ARBOL.

Un diagrama de árbol es una representación gráfica de un experimento que consta de r pasos, donde cada uno de los pasos tiene un número finito de maneras de ser llevado a cabo.

comentario: bueno en si el diagrama de arbol es un tipo de grafica estadistico y consta de una razon de pasos a seguir para realizarlo sobre determinado experimento